

xxter logic manual

XXTER LOGIC INTRODUCTION 2
CONFIGURING LOGIC 2
TESTING LOGIC 3
COMMISSIONING LOGIC 4
ADDENDUM: LOGIC ELEMENTS 5

xxter logic introduction

With the xxter logic module you can create and test logic schematics in an intuitive graphical environment, and apply it in the home or building automation.

There are many different logical blocks available, varying from simple AND ports to virtual dimmers. By combining multiple blocks in one schema, you can create complex automations.

This manual explains how a logic schematic can be created, how you can test it and how to commission it. As an addendum to this manual an overview is included of all the existing logic elements, with a complete explanation how they can be used.

More information about xxter can be found on our website www.xxter.com and on our forum forum.xxter.com. On our website, you can also find our installation and user manuals.

Configuring logic

The xxter logic configuration is done online, in the My xxter environment (https://my.xxter.com/). Login with your professional account and select the xxter project for which you want to configure a logic schematic. Select the "Logic" option on the left-hand side.

Logic
\checkmark Logic schematic
区 [9] 囬

On this page you can add a new logic schematic and edit, duplicate and delete existing schematics. You can disable a schematic (so it will not be executed) by clicking on the checkbox in front of the name.

When you add or edit a schematic, the schema editor will open. In a new schematic, by default a binary input and binary output will be displayed. By clicking on the plus icon on the top right of the screen, you can add logic elements. By clicking on the three dots, you can rename a schematic, save it and close the editor. From this menu, you also start the schematic simulator.

Every input, output or logical block is clearly colour coded on the connectors, indicating which data type can be connected. Green means a binary input (1 or 0), blue a numeric value and yellow a textual value. Outgoing connectors are lighter in colour and an incoming connector is darker in colour. Logical blocks can only be connected to connectors of the same type. You can connect up to 10 lines to one connector (incoming or outgoing).

You can connect elements by dragging your mouse from one connector to the other. It is not mandatory to always connect all connectors of a logical block. If no connector is connected, that input is simply ignored.

Every input, output or logical block has parameters. For instance, an input can be set up as a constant, or be linked to a component from the automation.

By clicking on the element, the parameters will be shown on the right-hand side of the screen. From this panel you can also delete an element. An overview of all elements and their parameters is
 included at the end of this manual.

When you have created a logic schematic, don't forget to save it, using the icon with the three dots. From this menu, you can also close the schematic editor.

Testing logic

Before commissioning logic in the automated home or building, we advise to always test the schematic first. By clicking on the icon with the three dots and then on the play icon, the schematic will reopen in simulation mode. In this mode it is not possible to make changes to the schematic. By pressing the cross icon in the top right corner, you will return to edit mode.

In simulation mode, you can use the menu with the three dots to start and stop the simulation, reset the simulation or change the speed of the simulation. The speed is particularly relevant for logical blocks that perform actions over time, like for instance a light timer, watchdog or delay module.

In simulation mode, you can manually assign virtual values to all inputs. Initially all values are always 0.

When you change a value of an input, the connected logical block is activated and the logic is performed. On the outgoing connector(s) the value will be shown, which is the result of the logic. This way, you can test if the logic schematic works as intended.

Commissioning logic

When you are happy with the logic schematic you created, don't forget to save it, before closing the editor.

[^0]By loading the appropriate xxter project, for which you have created the schematic, on the xxter controller, the logic schematic will become active.

To do this, \log in on the xxter controller and press "Load configuration".
You can verify how the logic is running real time, by enabling the user log for logic, on the Basic - Settings page of the xxter controller. When you open the user log, you can see that the input changes for any logical block are logged as well as the resulting output. Every logical block has a unique ID, which can be found in the online logic editor in the Parameters window.

Addendum: Logic elements

There are many different logic elements that can be used in a logic schematic. In this addendum all existing logic elements are listed with an explanation how they work, which parameters are available and what the available inputs and outputs are.

Inputs

1. Input - bit

2. Input-number

3. Input - text

4. Input - trigger

Trigger		Binary input that can be used as an input for other logic blocks. The binary output will be 1 / ON if the trigger is active. Only the Artnet trigger can also give a 0 / OFF as a trigger.
Parameters: - Type: HTTP trigger - SIP trigger - DoorBird trigger - Artnet trigger - Presence detection - Page opened - Location trigger - Trigger settings	- Activated HTTP trigge - Activated SIP trigger - Activated trigger from - Artnet trigger, gives a - Detected presence of - Opened page in the vi - Detected presence ba - Depending type	a DoorBird intercom 1 when the value is greater than 0 , otherwise 0 f one or more persons visualization ased on an iBeacon
IN: $-\quad \mathrm{n} / \mathrm{a}$		OUT: - Binary value, gives 1 / ON if the condition is met

5. Input-time

Outputs

6. Output-bit

	Binary output that can be used to process the result of the logic blocks.
Parameters: - Destination: - Component - Scene - Script - Command - Presence simulation - Alert service - Details destination	- Component from the project - Scene from the project, with optional action depending on value - Script from the project, with optional action depending on value - Command from the project (2 options, depending on value) - Start, Stop or Record of the simulation, depending on value - Alert service, to which a value can be passed - Depending on destination, 1 or 2 parameters
IN: - Binary input	OUT: - n/a

7. Output - number

8. Output - text

Basic blocks

9. AND port

AND port	Twofold AND port, giving output 1 / ON when all inputs are $1 / \mathrm{ON}$ and in all other cases 0 / OFF. The output can also be inverted.
Parameters: - Send output - On any input - On any input change - On output change - Output value - Normal - Invert	- Every new value on an input produces a new output value - Only if one of the input values change, an output value is sent - Only if the output value changes, it is sent - Gives " / ON" if the logic is valid - Gives " 0 / OFF" if the logic is valid
IN: $\quad 2 \times$ Binary input	OUT: - Binary output

	Fourfold AND port, giving output 1 / ON when all inputs are $1 / \mathrm{ON}$ and in all other cases 0 / OFF. The output can also be inverted.
Parameters: - Send output - On any input - On any input change - On output change - Output value - Normal - Invert	- Every new value on an input produces a new output value - Only if one of the input values change, an output value is sent - Only if the output value changes, it is sent - Gives " 1 / ON" if the logic is valid - Gives " 0 / OFF" if the logic is valid
IN: - $4 x$ Binary input	OUT: - Binary output

11. AND port [8v]

AND port	Eightfold AND port, giving output 1 / ON when all inputs are $1 / \mathrm{ON}$ and in all other cases 0 / OFF. The output can also be inverted.
Parameters: - Send output - On any input - On any input change - On output change - Output value - Normal - Invert	- Every new value on an input produces a new output value - Only if one of the input values change, an output value is sent - Only if the output value changes, it is sent - Gives "1 / ON" if the logic is valid - Gives "0 / OFF" if the logic is valid
IN: - $8 x$ Binary input	OUT: - Binary output

OR port	Twofold OR port, giving output 1 / ON when one the inputs is 1 / ON and if all the inputs are 0 / OFF, the output will also be 0 / OFF. The output can also be inverted.
Parameters: - Send output - On any input - On any input change - On output change - Output value - Normal - Invert	- Every new value on an input produces a new output value - Only if one of the input values change, an output value is sent - Only if the output value changes, it is sent - Gives "1 / ON" if the logic is valid - Gives " $0 /$ OFF" if the logic is valid
IN: - $2 x$ Binary input	OUT: - Binary output

13. OR port [4v]

≥ 1 \square \square OR port	Fourfold OR port, giving output 1 / ON when one the inputs is $1 / \mathrm{ON}$ and if all the inputs are 0 / OFF, the output will also be 0 / OFF. The output can also be inverted.
Parameters: - Send output - On any input - On any input change - On output change - Output value - Normal - Invert	- Every new value on an input produces a new output value - Only if one of the input values change, an output value is sent - Only if the output value changes, it is sent - Gives "1 / ON" if the logic is valid - Gives "0 / OFF" if the logic is valid
IN: - $4 x$ Binary input	OUT: - Binary output

≥ 1	Eightfold OR port, giving output 1 / ON when one the inputs is $1 / \mathrm{ON}$ and if all the inputs are 0 / OFF, the output will also be 0 / OFF. The output can also be inverted.
Parameters: - Send output - On any input - On any input change - On output change - Output value - Normal - Invert	- Every new value on an input produces a new output value - Only if one of the input values change, an output value is sent - Only if the output value changes, it is sent - Gives " 1 / ON" if the logic is valid - Gives " 0 / OFF" if the logic is valid
IN: - $8 x$ Binary input	OUT: - Binary output

15. XOR port

17. Bit toggle

	Toggle, changing the output ($1 / \mathrm{ON}>0$ / OFF or $0 /$ OFF $>1 / \mathrm{ON}$) on every binary input or pulse. The status can be provided as additional input to be inverted on toggle.
	utput if a 0 is received utput if a 1 is received output, regardless whether a 0 or 1 is received n an input produces a new output value input values change, an output value is sent value changes, it is sent
IN: - Binary input providing the pulse, leading to the toggle - Binary status, that should be inverted at toggle	OUT: - Binary output, giving the inverted value of the status input, according to the parameters

	Delayed binary output, where the incoming telegram or pulse is sent on after the provided time.
Parameters: - Delay - 0 (OFF) - Only change th - 1 (ON) - Only change th 0 and 1 (OFF/ON) - Always change - Send output - On any input - Every new valu - On any input change - Only if one of t - On output change - Only if the outp - Restart timer - "-" - A new value on - On input - A new value on	utput if a 0 is received output if a 1 is received output, regardless if a 0 or 1 is received n an input produces a new output value input values change, an output value is sent value changes, it is sent input while the timer is running, will be ignored input will always reset the timer
IN: - Numeric input, providing the delay to be used in seconds - Binary input, that is to be delayed	OUT: - Binary output, that will be the same as the binary input, after the provided time has passed

19. Delay number

	Delayed numeric output, where the incoming numeric value is sent on after the provided time.
Parameters: - Send output - On any input - Every new valu - On output change - Only if the outp - Restart timer - A new value on - On input - A new value on	an input produces a new output value value changes, it is sent input while the timer is running, will be ignored input will always reset the timer
IN: - Numeric input, providing the delay to be used in seconds - Numeric input, that is to be delayed	OUT: - Numeric output, that will be the same as the numeric input, after the provided time has passed

Compare number	Compares both incoming values according to the set parameter and provides the result as a binary output. For example, if the parameter is set as " $A=B$ " and values A and B are both the same, the output will be 1 / ON, and otherwise 0 / OFF.
Parameters: - Compare value - $A<B$ - $A \leq B$ - $A=B$ - $A>B$ - $A \geq B$ - $A<>B$ - Send output - On any input - On output change	than B or equal to B B than B or equal to B al to B n an input produces a new output value value changes, it is sent
IN: - Numeric value A, to compare - Numeric value B, to compare	OUT: - Binary output, providing the result of the comparison

21. Block bit

23. Block text

24. Filter bit
$\left.\begin{array}{|l|l|}\hline\end{array} \begin{array}{l}\text { Only passes the incoming (bottom) binary value } \\ \text { through as an output when it is the same as the } \\ \text { filter (top) value. }\end{array}\right\}$

25. Filter number

26. Min number

Max number	Provides the maximum value of both numeric inputs as an output.
Parameters: - Send output - On any input - On any input change - On output change	- Every new value on an input produces a new output value - Only if one of the input values change, an output value is sent - Only if the output value changes, it is sent
IN: - $2 x$ Numeric input	OUT: - Numeric output, equal to the highest value of the inputs

28. Average number

Average number	Provides the average value of both numeric inputs as an output.
Parameters: - Send output - On any input - On any input change - On output change	- Every new value on an input produces a new output value - Only if one of the input values change, an output value is sent - Only if the output value changes, it is sent
IN: \quad 2x Numeric input	OUT: - Numeric output, equal to the average value of the inputs

29. Absolute

			Provides the absolute value of the numeric input as an output. So, a negative value is made positive. For instance, -20 becomes 20.
Positive values remain unchanged.			

30. Math function

Conversion

31. Bit => number

	Convert a binary value into a numeric value, based on the provided inputs.
Parameters: - Send output - On any input - Every new va On any input change - Only if one of On output change - Only if the ou	on an input produces a new output value input values change, an output value is sent value changes, it is sent
IN: - Numeric input with the value for binary input 0 / OFF - Numeric input with the value for binary input 1 / ON - Binary input	OUT: - Numeric output, equal to input n 0 if the binary input is 0 / OFF and equal to n 1 if it is $1 / \mathrm{ON}$

32. Bit => text

	Convert a binary value into a text value, based on the provided inputs.
Parameters: - Send output On any input - Every new value on an input produces a new output value On any input change - Only if one of the input values change, an output value is sent On output change - Only if the output value changes, it is sent	
IN: - Text input with the value for binary input 0 / OFF - Text input with the value for binary input $1 / \mathrm{ON}$ - Binary input	OUT: - Text output, equal to input $t 0$ if the binary input is 0 / OFF and equal to $t 1$ if it is $1 / \mathrm{ON}$

33. Number => text

Number => text	Convert a numeric value into a text value, based on the set parameters. An unknown numeric value is ignored and does not lead to a new output.
```Parameters: - 20x [Numeric value] - Text value - Translation table of 20 numeric values to be converted into text```	
IN:   - Numeric input	OUT:   - Text output, based on the translation table in the parameters

## 34. Format number

		Formats a numeric value as a text, for instance   the number 19,3512 as "Max $19,35 \mathrm{KWh}$ ".

## Intelligent elements

	Interprets the pulse from a push button into three possible outputs: single push, double push and long push. Depending on the detected pulse it produces a 1 / ON for one of the three outputs.
Parameters:   - n/a	
IN:   - Binary input	OUT:   - Binary output for single push   - Binary output for double push   - Binary output for long push

## 36. Counter


## 37. Light timer

| time (s) |
| :--- | :--- | :--- |


Watchdog	Gives an alarm on the binary output when there has been no new input (either $0 /$ OFF or 1 / ON) within the provided period of time.
Parameters:   - Watchdog timeout (s)   - Send on Alarm   - 0   - 1	- Amount of seconds wherein a new pulse is required on the binary input   - Send a 0 / OFF to the binary output as an alarm   - Send a 1 / ON to the binary output as an alarm
IN:   - Binary input to be monitored	OUT:   - Binary output where the alarm is sent

39. Bit-byte converter

	Converts either 8 bits into 1 byte, or 1 byte into 8 bits. The order of bits is the most significant bit (128) on top and the least significant bit below.
Parameters:   - $\mathrm{n} / \mathrm{a}$	
IN :   - $8 x$ Binary inputs from MSB (Most Significant Bit) to LSB (Least Significant Bit)   - $1 x$ Numeric input (Byte value)	OUT:   - $1 x$ Numeric output (Byte value)   - 8x Binary outputs from MSB (Most Significant Bit) to LSB (Least Significant Bit)


	Validates the bottom numeric input value in regard to the threshold values and sends a value to the corresponding binary output if it is out of range. The threshold validation can be blocked with a binary input.
	reshold is validated eshold is validated re validated   hen the blocking BIT is 0 / OFF hen the blocking BIT is $1 / \mathrm{ON}$   hreshold is exceeded, send a 0 / OFF reshold is exceeded, send a 1 / ON   reshold is exceeded, send a 0 / OFF reshold is exceeded, send a 1 / ON   n an input produces a new output value value changes, it is sent
IN:   - Binary input, with the blocking BIT   - Numeric input with the upper threshold   - Numeric input with the lower threshold   - Numeric input that is to be validated	OUT:   - Binary output when the upper threshold is exceeded   - Binary output when the lower threshold is exceeded


	Stopwatch function, counting the time in seconds that the binary input "start/stop" is $1 / \mathrm{ON}$. The counted time is sent on the numeric output at a start/stop event, on request and if desired also cyclical. With the reset binary input, the counter can be set to 0 .
	start/stop and on request   start/stop, on request and cyclic (see parameter) riod in seconds to send the counted time
IN:   - Binary input to reset the counter   - Binary input to request the current counted time   - Binary input to start / stop the counter	OUT:   - Numeric value with the counted time in seconds

## 42. Virtual dimmer

	Virtual dimmer allowing several different ways to increase or decrease a dimmer. You can use a binary input / pulse button (up, down or toggle) or a numeric input, to increase and decrease the dimmer. When using the numeric input, it is only relevant whether the value is negative or positive, not the actual value itself.   The speed of dimming is set with a separate numeric input, in seconds from 0 to 100.
Parameters:   - Minimum dim value   - Minimal dim va   - Under minimum dim value set to 0   - On   - Send a 0 for all   - Off   - Sends no value	that is sent out   ues below the minimum dim value der the minimum, until the value is truly 0
IN:   - Numeric input with the desired speed in seconds to dim from 0 to 100   - Binary input to dim up   - Binary input to dim down   - Binary input with toggle to dim up/down   - Numeric input, increasing or decreasing the dim value depending if the value is positive or negative   - Numeric input, with the current dim value (status, $0-100 \%$ )	OUT:   - Numeric output with dim value (0-100\%)



## 44. Curve alteration

	With curve alteration, input values can be translated to different output values to achieve a steeper or flatter curve, for instance for a dimmer. By creating a mapping of 10 points to new values, the module will automatically calculate all intermediate values.   In the parameter graph, the altered curve is displayed
Parameters:   - 10x Input - Output mapping - Table with 10 translate values, to adjust the curve as desired	
IN:   - Numeric input	OUT:   - Numeric output


  Dynamic curve alteration	With the dynamic curve alteration, the bottom numeric value is translated to an output value to achieve a steeper or flatter curve, for instance for a dimmer. The mapping is created by setting 10 points that are mapped to the top 10 numeric inputs y0 to y9, to allow a dynamic alteration of the curve.
Parameters:   - 10x Input - Output mapping   Table with 10 translate values mapped to numeric inputs y0 to y9, to adjust the curve as desired	
IN:   - 10x Numeric input y0-y9 to adjust the curve   - Numeric input, that requires the curve alteration	OUT:   - Numeric output with the adjusted curve


	With the HCL curve, you can generate a dynamic brightness and color temperature for lighting, matching natural lighting conditions. When activated, it will gradually change the light brightness and color during the day.
Parameters:   - Min. brightness   - Minima   - Max. brightness   - Min. color temperature   - Max. color temperature   - Time base   - Sunrise / sunset   - Time based   - Start time   - Peak time brightness   - Peak time color temperature   - Momen   - End time   - End mo	to output   ss to output   perature to output   mperature to output   ise and sunset times to calculate start, peak and end times of start, peak and end times   alculate the curve (before this time, output remains unchanged) *   um brightness *   color temperature *   Iculate the curve (after this time, output remains unchanged) *   e ignored when time base = "sunrise / sunset"
IN:   - Binary input to start / stop the curve calculation	OUT:   - Numeric output with the calculated brightness   - Numeric output with the calculated color temperature

## 47. Color temperature to whites



[^0]:    Load configuration

